If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3x^2)+6x-10=0
a = 3; b = 6; c = -10;
Δ = b2-4ac
Δ = 62-4·3·(-10)
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{39}}{2*3}=\frac{-6-2\sqrt{39}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{39}}{2*3}=\frac{-6+2\sqrt{39}}{6} $
| (2y-48)(2y-4)=180 | | 9v^2+18+5=-3 | | 17x-5=97 | | 4x2−16x+16=0, | | 6n^2-8n-78=0 | | 5^(x-2)×3^(2x)=8 | | 9b^2+12=2 | | 1x+101=90 | | ×+3y=31 | | 0.5x-3.25=30.5 | | x+74=x+48 | | M=(13x+1) | | 8.2+x=42.1 | | 750-30t^2-60t=0 | | 5x-4(4x+6)=101 | | 6(2-8v)=-132 | | 8.3+x=42.1 | | -3x-6(8x+3)=288 | | 14+6(x)=48 | | x+3.6= | | -3(-7b-7)+6=132 | | 2x-{2(x+4)+4=6x | | 2n+15=7;n=-4 | | x+2x-3=1 | | 4n-8=12;n=20 | | 56=23+c | | 3+2x=40 | | -3(3a-6)=9 | | 43+x=78 | | x+75=x+65=x+67 | | 3x+11=-14 | | x7+x=8 |